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ABSTRACT: The market for illicit drugs has been reshaped by the emergence of
more than 1100 new psychoactive substances (NPS) over the past decade, posing
a major challenge to the forensic and toxicological laboratories tasked with CFM-IDc
detecting and identifying them. Tandem mass spectrometry (MS/MS) is the
primary method used to screen for NPS within seized materials or biological
samples. The most contemporary workflows necessitate labor-intensive and
expensive MS/MS reference standards, which may not be available for recently
emerged NPS on the illicit market. Here, we present NPS-MS, a deep learning
method capable of accurately predicting the MS/MS spectra of known and
hypothesized NPS from their chemical structures alone. NPS-MS is trained by transfer learning from a generic MS/MS prediction
model on a large data set of MS/MS spectra. We show that this approach enables a more accurate identification of NPS from
experimentally acquired MS/MS spectra than any existing method. We demonstrate the application of NPS-MS to identify a novel
derivative of phencyclidine (PCP) within an unknown powder seized in Denmark without the use of any reference standards. We
anticipate that NPS-MS will allow forensic laboratories to identify more rapidly both known and newly emerging NPS. NPS-MS is
available as a web server at https://nps-ms.ca/, which provides MS/MS spectra prediction capabilities for given NPS compounds.
Additionally, it offers MS/MS spectra identification against a vast database comprising approximately 8.7 million predicted NPS
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compounds from DarkNPS and 24.5 million predicted ESI-QToF-MS/MS spectra for these compounds.

B INTRODUCTION

Over the past few decades, the illicit drug market has been
reshaped by the proliferation of novel psychoactive substances
(NPS). These compounds, which are often referred to as
designer drugs, synthetic drugs, or bath salts, are designed to
exert the same psychoactive effects as conventional drugs of
abuse (e.g, methamphetamine, cocaine, and heroin). However,
enterprising clandestine chemists introduce sufficient structural
differences into NPS to ensure that they circumvent the
legislative measures imposed around conventional drugs." The
vast majority of the resulting compounds have never been
tested in humans, and as a result, many NPS(s) have been
associated with life-threatening toxidromes and fatalities.” The
resulting public health burden has led many countries to
amend their drug laws to include known NPS. Paradoxically,
however, these laws have only resulted in further proliferation
of NPS analogues.”™> As of the end of 2021, the European
Monitoring Centre for Drugs and Drug Addiction (EMCD-
DA) is currently monitoring 830 NPS, with two new NPS
emerging per week on average.’ Globally, as many as 1100
NPS are currently monitored by the United Nations Office of
Drugs and Crime (UNODC) early warning advisory (EWA).”

The proliferation of NPS presents a major challenge for
forensic chemistry and toxicology laboratories that are tasked
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with identifying these compounds. Mass spectrometry (MS) is
the primary method used for NPS detection and identification,
with most contemporary screening workflows relying on the
diagnostic product ions produced by tandem mass spectrom-
etry (MS/MS) for high-confidence NPS identification. The
gold standard for identification of a putative NPS by MS/MS is
through comparison to reference MS/MS data collected from a
certified reference material (CRM), most commonly a
synthetic reference standard. However, the expense of
maintaining (and constantly extending) large collections of
CRMs can be formidable.® This financial burden is
compounded by the rapid rate at which novel compounds
emerge from, and disappear from, the illicit market. By the
time a newly purchased CRM has been integrated into an NPS
screening workflow, the NPS itself may already have
disappeared from circulation. Moreover, for NPS that have
just emerged on the illicit market, the CRMs necessary to
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detect and identify these compounds may not yet even be
commercially available.

The limitations of workflows based on CRMs have led many
forensic laboratories to complement these approaches by
performing MS/MS database matching. This entails the use of
in-house MS/MS databases that contain product and precursor
ion data of known or theoretical substances for which the
laboratory does not possess a CRM. This MS/MS information
can be acquired from the scientific literature, monographs by
SWGDRUG’ or NPS Discovery,10 and commercial MS/MS
libraries (e.g, mzCloud''). MS/MS database matching allows
forensic laboratories to monitor a much larger number of NPS
samples in a more cost-effective way.

Of particular interest for forensic laboratories is the crowd-
sourced MS/MS database, HighResNPS.lz’13 HighResNPS
represents, to our knowledge, the largest publicly available
database of MS/MS data for NPS, which has been made
available for direct implementation in NPS screening."
However, there are often very limited MS/MS data on newly
emerging NPS compounds. Approximately one-third of the
compounds in the HighResNPS database have missing product
ion information. Many of these compounds have recently been
reported by different drug monitoring agencies but do not yet
have published analytical data.

The difliculty of acquiring analytical data for emerging NPS
has led to efforts to predict MS/MS spectra from the chemical
structures of known or hypothesized NPS. Several studies have
investigated the collision-induced dissociation (CID) pathways
for established classes of NPS in order to enable manual
prediction of MS/MS spectra for structurally related
compounds.'*™"® Unfortunately, this manual prediction of
MS/MS spectra is limited in both throughput and accuracy.
Recently, many are using a more viable solution to overcome
the current dearth of experimental MS/MS spectra, which
would be to use in silico MS spectral prediction models capable
of accurately predicting MS/MS spectra directly from a given
(known) structure. Programs such as MetFrag'’ and
MAGMa" use heuristic or combinatorial fragment modeling
techniques to predict the position and likelihood of bond
breakages in molecules and the corresponding MS/MS spectra.
Among the most accurate approaches to MS/MS prediction is
an in-house previously described method, i.e., CFM-ID,*' ™%
which uses machine learning to predict CID pathways for small
molecules. This approach renders the MS/MS spectra
predicted by CEM-ID highly interpretable and explainable as
each product ion in a predicted MS/MS spectrum is assigned a
hypothetical fragment structure by the model. Beyond its
interpretability, CFM-ID 4.0 is also a highly accurate tool,
outperforming other popular in silico mass spectra tools when
evaluated on the CASMI 2016 Cat3 data set.”®

The NPS community has already started to explore the use
of CEM-ID and in silico-predicted MS/MS spectra for MS/MS
database matching. For instance, Polettini et al. applied CEM-
ID 2.0 to predict and compare spectra acquired from 99
synthetic cannabinoids (SCs).”” More recently, we used CFM-
ID 4.0 to predict MS/MS spectra for 8.9 million hypothetical
NPS structures anticipated by a chemical language model,
DarkNPS.”® Our findings indicated that the predicted MS/MS
spectra could be used to help identify a substantial number of
recently discovered NPSs. However, we also noted that the
agreement between the observed MS/MS spectra and the
predicted CFM-ID MS/MS spectra was highly variable,
especially at higher collision energies.

Because CFM-ID was developed to be a very general MS/
MS spectral prediction tool, we investigated the possibility of
developing a more specialized version of CEM-ID that could
perform substantially better on the task of predicting MS/MS
spectra specifically for NPS. Here, we describe this new version
of CEM-ID for NPS, which we have dubbed NPS-MS. NPS-
MS was trained exclusively on experimental QTOF MS/MS
spectra acquired from NPS using a technique called “transfer
learning.”>” We evaluate the accuracy of NPS-MS for both
MS/MS prediction and compound identification and find that
it is substantially more accurate than both earlier versions of
CFM-ID and other widely used tools such as MetFrag'® and
SIRIUS 4.°° In this manuscript, we refer to the MS/MS
prediction task as “compound-to-mass spectrum” or “C2MS”
and the compound identification task as “mass spectrum-to-
compound” or “MS2C.” We anticipate that the performance of
NPS-MS is sufficiently good that it could be routinely and
reliably used for the putative identification of newly emerging
NPS, as well as for the identification of never-before-seen NPS.

B METHODS

MS/MS Spectra Data Sets. To train and evaluate NPS-
MS, we assembled a data set comprising 1872 MS/MS spectra
for 624 NPS, obtained from the Institute for Legal Medicine
(Johannes Gutenberg University, Mainz, Germany, n = 585
NPS) and ChemCentre (Perth, Australia, n = 39 NPS). The
MS/MS data were acquired using two independent Agilent
Technologies quadrupole time-of-flight mass spectrometer
(QTOF) systems. Both systems were operated in positive
electrospray ionization (ESI*) with collision energies of 10, 20,
and 40 eV applied for CID experiments of the protonated
precursor ion [M + H]*. For each MS/MS spectrum, we
obtained product ion mass-to-charge ratios (m/z) and percent
relative intensities (% rel. int.) after removing m/z values
(peaks) with a relative intensity less than 3%. The instances
were then randomly shuffled and split into a training set of 494
compounds (1482 spectra) and a held-out test set of 130
compounds (390 spectra) at approximately an 80:20 ratio.

NPS-MS Model Training. The architecture of the NPS-
MS model is based on that previously described for CFM-ID
4.0 Conceptually, for the C2MS task, given an input
molecule, CFM-ID first employs a combinatorial bond
cleavage approach to enumerate all theoretically possible
fragments. The output of this procedure is a molecular
fragmentation graph, in which each node represents a
theoretically possible fragment from the parent molecule
with one bond cleavage, and each edge (also known as
transition) between nodes encodes the chance that one
fragment directly produces another fragment through a
fragmentation event. The probability of each transition is
estimated by parameters that CFM-ID learns from its training
data set of known molecules and their associated MS/MS
spectra. Finally, CFM-ID uses the fragmentation graph and
associated transition probability estimates to reconstruct the
corresponding MS/MS spectrum for the input molecule. The
parameters of CEM-ID are learned from a training data set of
known molecule-MS/MS spectrum pairs, using expectation
maximization (EM) to attempt to optimize a negative-log-
likelihood loss function.*>**

We trained NPS-MS using a machine learning technique
called transfer learning.”” Transfer learning entails the reuse of
a pretrained model to address a new task or problem. Here, we
used the pretrained model from CFM-ID 4.0, which was
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trained on a large and diverse data set of generic MS/MS
spectra. We then fine-tuned the learnable parameters of CFM-
ID 4.0 by then training it on a smaller data set of MS/MS
spectra obtained from authentic standards of NPS, as described
above. We fine-tuned NPS-MS by freezing all but the last layer
of the neural network in CFM-ID 4.0 during the retraining
process. For comparison, we also trained a model with an
identical architecture to CFM-ID 4.0 from scratch on the NPS-
MS/MS spectra data set. We refer to this model as “NPS-MS
De Novo.” For both models, training was limited to 30
iterations of the EM algorithm, and within each iteration, the
neural network training was limited to 600 minibatches.

Model Evaluation. We evaluated the performance of NPS-
MS on two tasks. In the first task, we applied NPS-MS to
predict the MS/MS spectra of known NPS, and then we
directly evaluated the accuracy of the MS/MS spectrum
predictions (C2MS Tasks). In the second task, we used NPS-
MS to identify known and unknown NPS from the
experimentally acquired MS/MS spectra. That is, we first
applied NPS-MS to predict MS/MS spectra for every molecule
within a data set of known NPS chemical structures and then
searched experimentally acquired MS/MS spectra against this
data set of predicted spectra to match the experimentally
acquired spectra to chemical structures (MS2C Tasks).

The primary evaluation metric in the C2MS task was the
Dice coefficient, which quantifies the similarity between
experimental and predicted MS/MS spectra by measuring
the ratio between the number of matched peaks and the total
number of peaks. We also used the dot product (also known as
the cosine similarity) as a secondary measure of MS/MS
spectral similarity. This method computes the cosine of the
angle between the unit vectors obtained from two MS/MS
spectra and, therefore, considers both the m/z values of each
peak as well as their relative intensities. In addition, we also
measured the precision and recall between the peaks in the
experimental and predicted MS/MS spectra to further
understand the performance of NPS-MS and the baseline
models to which it was compared. Precision measures the
number of peaks in the predicted spectra that are also present
in the experimental spectra. Conversely, recall measures the
percentage of peaks in the experimental spectra that are
correctly predicted.

For the MS2C task, we evaluated the accuracy of compound
identification when searching in three different data sets of
NPS chemical structures. Data Set #1 comprised the dedicated
NPS compound candidate database, HighResNPS,13 consisting
of 1922 compounds. Data Set #2 constructed a more diverse
library of candidate structures by supplementing HighResNPS
with the PubChem chemical structure database,”’ comprising
an additional 94.7 million compounds. Data Set #3 consisted
of both the known NPS structures from HighResNPS, as well
as a library of 8.9 million theoretical NPS compounds
generated by DarkNPS,*® a chemical language model®*~**
trained on known NPS, which we previously demonstrated to
be capable of anticipating the structures of novel NPS that
subsequently emerge on the illicit market.

For each NPS data set, the experimentally measured
precursor ion m/z was used to filter the data set to generate
a subset of potential candidates, using a window of +10 ppm.
The predicted MS/MS spectra of each candidate were then
compared with the experimental MS/MS spectra to identify
the top-scoring spectral matches. To avoid overestimating
performance, we required that there were at least three

candidates from each precursor ion. Each of the three NPS
structural databases was preprocessed by removing all charged
and zwitterionic chemicals. Stereochemistry was removed, and
the resulting compounds merged into their base form. Spectral
matches were scored and ranked based on the average of the
Dice coefficient and dot product. The performance of each
C2MS model was evaluated by using a cost score. In this
setting, a cost score was assigned to each compound
identification based on the rank relative to the correct answer,
considering the possibility of equally ranked candidates. This
cost score reflects the amount of expected MS/MS experi-
ments required to reach the ground truth compound, given a
list of identification results for a single task. Details of this score
can be found in the Supporting Information (SI): Details for
Cost Score.

In cases in which the top-ranked spectral match does not
correspond to the ground truth NPS, we also assessed the
structural similarity between the ground truth NPS and the
top-ranked candidates. Structural similarity was quantified
using the Tanimoto coefficient between ECFP4 finger-
prints’*>” and the Euclidean distance between Continuous
and Data-Driven Descriptors®® (CDDD) representations. The
CDDD is a 512-dimensional continuous representation of a
given compound generated by a deep learning model. If the
top-ranked compound is the correct compound, the CDDD
distance will be zero, whereas if multiple candidates are ranked
equally, the Tanimoto coefficient and CDDD distances are
averaged over all equally ranked candidates.

Baseline Models. To place the performance of NPS-MS
on the compound-to-mass spectrum and mass spectrum-to-
compound tasks in context, we compared NPS-MS to a series
of literature baselines.

For the C2MS task, we compared NPS-MS and the version
of NPS-MS trained without transfer learning (i.e,, NPS-MS De
Novo) to CFM-ID 2.0°* and CEM-ID 4.0.>* (We did not
consider CFM-ID 3.0,>' which was released in 2019, as it
differed from CFM-ID 2.0 primarily in the incorporation of
hand-crafted fragmentation rules to improve the handling of
lipids.) For the MS2C task, we evaluated the performance of all
four methods used in the C2MS task, as well as MetFrag19 and
SIRIUS 4.*° Interestingly, MetFrag could only be evaluated
against Data sets #1 and #2 since several structures in Data Set
#3 cause it to crash. Only results using the 20 eV spectra are
reported here, as MetFrag performed much better when using
this collision energy compared to others. SIRIUS 4 was only
evaluated against a subset of Data Set #2 since its underlying
model (CSI:FingerID*”) was trained on a number of NPS,
some of which were present in our test set.

Acquisition of MS/MS Spectra for 3-Chloro-PCP. MS/
MS spectra for 3-chloro-phencyclidine (3-CI-PCP) at collision
energies of 10, 20, and 40 eV were collected from an unknown
powder seized in Denmark in January 2022, using a Waters
Corporation LC-QTOF-MS in positive ionization mode, as
previously described.*’

B RESULTS AND DISCUSSION

A total of 1872 MS/MS spectra for 624 compounds, including
both NPS themselves and their metabolites, were acquired
using liquid chromatography-high resolution mass spectrom-
etry (LC-HRMS) at collision energies of 10, 20, and 40 eV.
Training and holdout test data sets were randomly selected,
with the training and testing sets having 494 (1,482 spectra)
and 130 (390 spectra) compounds, respectively. Details of the
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Figure 1. Performance on the compound-to-mass spectrum (C2MS) task. The NPS-MS De Novo model is trained from scratch on the NPS
training data set, whereas the NPS-MS model is trained via transfer learning from a CEM-ID 4.0 base model that is subsequently fine-tuned on the
NPS training data set. Bars display mean scores for each metric with error bars indicating the 95% confidence interval. Left, the overall performance
of each model averaged over three different collision energies (10, 20, and 40 eV). Right, the performance of each model on MS/MS spectra

collected at each individual collision energy.

EMCDDA classification information for each set can be found
in Figure S1.

NPS-MS Enables Accurate MS/MS Spectrum Predic-
tion. We initially assessed its ability to predict MS/MS spectra
for molecules in the test set (ie., the C2MS task). We
compared NPS-MS to an identical model trained without
transfer learning (NPS-MS De Nowo), as well as two generic
MS/MS prediction models (CFM-ID, versions 2.0 and 4.0).
The performance of each model was quantified by using the
average Dice coefficient and dot product of predicted MS/MS
spectra against the held-out test set, as summarized in Figure 1.
In general, models designed specifically to predict MS/MS
spectra for NPS (NPS-MS and NP-MS De Novo) out-
performed generic MS/MS prediction models (CFM-ID
versions 2.0 and 4.0). Specifically, NPS-MS (Dice coefficient
= 0.55; dot product = 0.67) and NPS-MS De Novo (Dice
coefficient = 0.62; dot product = 0.69) outperformed CFM-ID
4.0 by margins of 44 and 59%, respectively, as quantified by the
Dice coefficient and by margins of 72 and 77%, as quantified
by the dot product. Notably, for 36 of the 390 MS/MS spectra
in the test data set (9.2%), NPS-MS predictions achieved a
perfect Dice coefficient of 1.0, as compared to just 10 (2.6%)
for CEM-ID 4.0. Detailed discussion of individual predicted
MS/MS is provided in the SI under Inspection of
representative MS/MS spectra predicted by NPS-MS with
Figure S2.

In addition, we observed that the mean recall values of
CFM-ID and NPS-MS were essentially identical. Instead, the
improved performance of NPS-MS over CEM-ID can be
attributed to a nearly 3-fold increase in the precision of NPS-
MS. In other words, although CFM-ID can correctly predict
true-positive peaks that appear in the experimentally acquired
MS/MS spectra of known NPS, it also predicts many false-
positive peaks.

NPS-MS Enables Accurate Compound Identification
from Experimental MS/MS Spectra. Having shown that
NPS-MS affords a substantial increase in the accuracy of the
MS/MS spectrum prediction, we next asked whether these
more accurate MS/MS spectra would, in turn, enable more
accurate compound identification. In this task, we first used
NPS-MS to predict MS/MS spectra for a data set of NPS
chemical structures and then searched the experimentally
measured MS/MS spectra against this database of predicted
spectra.

We evaluated the performance of NPS-MS when using three
different chemical structure databases of varying sizes and
diversity as input. Data Set #1 comprised the 1922 compounds
in the HighResNPS database. Data Set #2 supplemented
HighResNPS with 94.7 million compounds from PubChem.
Data Set #3 supplemented HighResNPS with 8.9 million
hypothetical NPS structures anticipated by DarkNPS.** We
compared the performance of six different MS2C models,
including MetFrag19 and SIRIUS 4,%° in addition to the four
models evaluated on the C2MS task. The performance of each
method was quantified using the cost score, an extension of the
top-k accuracy that is robust to the presence of ties (Methods).
In addition, we quantified the structural similarity between the
top-ranked candidate nominated by each method and the
ground truth NPS using the Tanimoto coefficient and the
CDDD distance.”®

The number of test compounds used in evaluating the Data
sets #1, #2, and #3 were 53, 113, and 128, respectively. The
median number of candidates for each parent or precursor ion
was 4, 8,061, and 2,414, respectively. A set of histograms
displaying the number of candidates in each MS2C task is
provided in Figure S3. Figure 2 summarizes the performance
metrics for the MS2C experiments, including the cost-1
accuracy, the cost-1 to cost-10 cumulative distribution function
(CDF), the Tanimoto coefficient, and the CDDD distance.
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Figure 2. Performance on the mass spectrum-to-compound (MS2C) tasks. ID Task A: MS2C identification task on HighResNPS data set (Data
Set #1). ID Task B: MS2C identification task on HighResNPS + PubChem data set (Data Set #2). ID Task B. SIRIUS: MS2C identification task
was performed on a subset of Data Set #2 to enable comparison with SIRIUS 4. ID Task C: MS2C identification task on HighResNPS + DarkNPS
data set (Data Set #3). For each task, shown from left to right are far left, cost-1 score; middle left, CDF of cost-1 to cost-10 score; middle right,
Tanimoto coefficient between the highest-ranked candidate and the ground truth structure; far right, negative CDDD distance of the highest-
ranked candidate and the ground truth structure.

In Data Set #1, NPS-MS correctly identified the ground challenging than in more diverse databases such as Data sets
truth NPS as the highest-ranked candidate in 69.8% (n = 37) #2 and #3.
of cases. This represented an improvement of 12.0 and 15.4% In Data Set #2, NPS-MS achieved a 58.4% cost-1 score, an

over CEFM-ID versions 2.0 and 4.0, respectively, as well as an improvement of 165 and 136% over CFM-ID 3.0 and 4.0,
improvement of 270% over MetFrag. The MS2C performance respectively, and 250% better than MetFrag. This performance

difference between each method diminished rapidly with improvement was observed consistently for varying cost
increasing cost scores. This can likely be attributed to the small scores: for instance, NPS-MS achieved an 80% improvement
number of candidates per experimental MS/MS spectrum in in the cost-S score compared to CFM-ID 4.0. Moreover, in
this data set, which renders compound identification far less cases in which NPS-MS failed to correctly identify the ground
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Figure 3. (a). Identification of the designer fentanyl derivative ocfentanil in an MS2C task. The top-3 candidates predicted by NPS-MS from Data
Set #2 based on the spectra of ocfentanil were all structurally related to ocfentanil. The correct structure was ranked as the third-best candidate, and
the top-2 candidates were its 3-fluoro (T, = 0.64) and 4-fluoro (T, = 0.67) isomers. In contrast, the top-3 candidates given by CFM-ID 4.0 display
little resemblance to the correct structure, with Tanimoto coefficients of 0.12, 0.09, and 0.23. (b) Retrospective application of NPS-MS to identify
an unknown NPS detected in a seized powder. Left, MS/MS spectra of 3-CI-PCP predicted by CFM-ID 4.0 at 10, 20, and 40 eV. Middle, MS/MS
spectra of 3-CI-PCP predicted by NPS-MS at 10, 20, and 40 eV. Right, the top-3 compounds identified by NPS-MS and CFM-ID 4.0 in a MS2C
identification task when searching the experimentally acquired 3-CI-PCP spectra against a database of novel chemical structures anticipated by

DarkNPS.
truth NPS, the top-ranked candidate was generally structurally candidates were its 3-fluoro (T. = 0.64) and 4-fluoro (T, =
similar to the correct compound. For example, the top-3 0.67) isomers. In contrast, the top-3 candidates given by CFM-

candidates predicted by NPS-MS from Data Set #2 based on ID 4.0 hardly resembled the correct structure, with Tanimoto
the MS/MS spectra of ocfentanil (i.e., 2-fluoromethoxyacetyl coefficients of just 0.12, 0.09, and 0.23.

fentanyl; 2-methoxy-N-(1-phenethylpiperidin-4-yl)-N-2-fluoro- We also evaluated the performance of SIRIUS 4 within a
phenylacetamide) were all clearly structurally related to subset of Data Set #2 after removing compounds that were
ocfentanil (Figure 3a). In this example, the correct structure used to train SIRIUS 4. As seen in Figure 2, SIRIUS 4

was the third-highest scoring candidate, while the top-2 outperformed CFM-ID 4.0, but NPS-MS predictors performed
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substantially better than SIRIUS 4. We also observed that
despite its generally good accuracy, SIRIUS 4 nominated
structurally very different compounds in several cases. This
resulted in both the Tanimoto coefficient and the CDDD
distance of SIRIUS 4 compounds having a much greater spread
compared to NPS-MS.

Finally, we evaluated the performance of NPS-MS when
searching against a database of 8.9 million predicted NPS
structures anticipated by our previously described chemical
language model, DarkNPS (Data Set #3). This data set
presents a unique challenge for compound identification, since
the DarkNPS compounds are far less chemically diverse than
the candidates in PubChem (Data Set #2), and thus more
difficult to distinguish. Consequently, the performance of both
CEM-ID and NPS-MS was generally lower than in Data sets
#1 and #2, with NPS-MS achieving a cost-1 score of 25.8%.
However, this nonetheless represented an improvement of
416% compared with CFM-ID 4.0. NPS-MS was also 474%
better than CEM-ID 4.0 in terms of the cost-5 score. Notably,
NPS-MS also achieved a substantial improvement over NPS-
MS De Novo in this data set (cost-1 score, 20.3%). The
improved identification performance of NPS-MS over NPS-
MS De Novo can be attributed to the use of transfer learning,
which allowed NPS-MS to inherit more general knowledge
about bond fragmentation captured by CEM-ID 4.0.

NPS-MS Enables Identification of NPS without
Reference Materials in Forensic Samples. In January
2022, the Danish Customs Agency (Toldstyrelsen) seized an
unknown powder that was then submitted to the Section of
Forensic Chemistry (Retskemisk Afdeling) at the University of
Copenhagen for analysis. Routine analysis using a Waters
Corporation LC-QTOF-MS revealed the main constituent of
the powder to be the novel arylcyclohexylamine 3-chloro-
phencyclidine (3-CI-PCP), which had first emerged on the
illicit market in December 2020. Although the identity of the
powder was determined without the use of NPS-MS, we
believed this would be a useful example to simulate the
applicability of NPS-MS in a forensic chemistry context, given
that this NPS was unknown until very recently and
consequently could not have been identified using a workflow
that relied exclusively on CRMs.

We first asked whether NPS-MS was capable of accurately
predicting the MS/MS spectra of 3-Cl-PCP, which was not
part of either the training or test data sets. We also applied
NPS-MS to predict the MS/MS spectra of 2-Cl-PCP and 4-Cl-
PCP, two other known chlorinated PCP derivatives (Figure
S4a). Inspection of the resulting predicted spectra revealed
excellent correspondence between the predicted and exper-
imentally acquired 3-CI-PCP spectra with an average Dice
coefficient of 0.66 and an average dot product of 0.72.
Moreover, for all three PCP derivatives, the major m/z peaks at
each collision energy were correctly predicted, with the lone
exception being m/z 125.0153 for 2-CI-PCP. This corresponds
to the 2-chlorophenyl cation, [C¢H,Cl]*. This application also
underscores the interpretability of NPS-MS, with each
predicted m/z value assigned a corresponding fragment ion
structure (Figure S4b). While we are aware that the proposed
structures for some of the product ions are unlikely to exist,
potentially undergoing rearrangement or cyclization (e.g.,
structures S, 8, 10, and 13), the major product ions (ie. 1,
2, and 3) that were proposed, are close to what is likely to exist
in the gas-phase based on the proposed pathways for other
phencyclidine-related compounds.*'

As a further test of NPS-MS, we asked whether searching the
experimentally acquired spectra for 3-CI-PCP against Data Set
#3 would have led to the identification of this unknown NPS,
given that 3-CI-PCP was among the novel NPS structures
anticipated by DarkNPS. To this end, we applied NPS-MS to
predict MS/MS spectra for a total of 1582 compounds in Data
Set #3 with a precursor mass within 10 ppm of 3-CI-PCP.
Strikingly, among these 1582 candidates, 3-CI-PCP correctly
emerged as the top-ranked candidate (Figure 3b). Moreover,
the second-ranked candidate was the structurally related
derivative 4-CI-PCP. Interestingly, the third-ranked compound
was not 2-CI-PCP but a structurally related isomer, wherein
the cyclohexane ring is replaced with a 2-methylcyclopentane
ring (i.e.,, 1-[1-(3-chlorophenyl)-2-methylcyclopentyl]-
piperidine). In contrast, the candidates suggested by CFM-
ID 4.0, while structurally related to 3-CI-PCP, did not include
the correct compound. Instead, the top-ranked compound was
the 2,2-dimethylcyclopropyl derivative with the chlorine atom
at position 4 (i.e., 1-[1-(4-chlorophenyl)-2,2-
dimethylcyclopropyl]piperidine). Collectively, these observa-
tions highlight the potential applications of NPS-MS to
identify previously unknown NPS within real forensic samples.

Bl CONCLUSIONS

Here, we present NPS-MS, and we demonstrate that it can
accurately predict MS/MS spectra for both known and
predicted NPS chemical structures. By leveraging transfer
learning from a generic MS/MS prediction model, we show
that NPS-MS can generate remarkably accurate MS/MS
spectra in a variety of C2MS tests and substantially
outperforms generic models on this task. Moreover, we
demonstrate that this highly accurate MS/MS spectrum
prediction, in turn, enables substantially more accurate
identification of known NPS on a variety of MS2C tasks,
even when searching in databases comprising millions of
chemical structures. NPS-MS can be also used in conjunction
with DarkNPS™® to search experimentally acquired MS/MS
spectra against unknown NPS structures anticipated by a
chemical language model, and in a retrospective evaluation, we
show that NPS-MS would have enabled the identification of a
previously unknown PCP derivative without the use of any
reference materials. Collectively, these results open the
possibility of using NPS-MS to identify emerging NPSs for
which reference MS/MS spectra are not yet available or even
never-before-seen NPS, within law enforcement seizures or
biological samples. The improvement in prediction accuracy
for NPS-MS can be largely attributed to the fact that it was
optimized to work with NPS-like compounds. Future research
could explore the potential of transfer learning to enhance
CFM-ID for other specific subdomains, specifically, the
relationship between prediction performance and structure
diversity for targeted data sets.

B ASSOCIATED CONTENT

Data Availability Statement

NPS-MS is available as a web server at https://nps-ms.ca/.
This web server provides MS/MS spectra prediction
capabilities for the given NPS compounds. Additionally, it
offers MS/MS spectra identification against a vast database
comprising approximately 8.6 million predicted NPS com-
pounds from DarkNPS™ and 24.5 million predicted ESI-
QToEF-MS/MS spectra for these compounds. The Docker
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image for NPS-MS spectra prediction, named “wishartlab/
cfmid:nps-ms_1.0.0,” can be found on Docker Hub.

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.3c02413.

Additional materials showing the examples of NPS-MS
predicted spectra and details of evaluation metrics, as
well as additional figures showing the composition of the
training data set, the number of candidate compounds in
each MS2C task, and details for 3-CI-PCP case study
(PDF)
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